

Global Nuclear Explosion Monitoring

Jay Zucca, Presenting
Lawrence Livermore National Laboratory
September 2006

Natural events occur world wide

World Seismicity 1977-1992

Networks such as the International Monitoring System can detect events down to a threshold

Example of a seismic station

From CTBTO website

Example of an Infrasound/Radionuclide Station

Example of a hydroacoustic station

From CTBTO website

As part of the overall nuclear non-proliferation program, the U.S. Government monitors for potential nuclear weapons testing

- Various Executive Branch agencies contribute to this mission:
 - Air Force Technical Applications Center
 - Air Force Geophysics Laboratory
 - Department of Energy's National Nuclear Security Administration
 - Lawrence Livermore National Laboratory
 - Los Alamos, Sandia, and Pacific Northwest National Laboratories

U.S. sponsors satellite monitoring

From NNSA NEM Strategic Plan

The progression of test ban treaties is driving monitoring from teleseismic to regional distance Teleseismic (Global)

Regional (< 2000km) • Limited Test Ban Treaty (1963) Threshold Test Ban Treaty (1974) Comprehensive Test Ban Treaty (1996)

Why are regional monitoring and calibration difficult problems?

Event location is performed by triangulation of seismic wave arrival times

Event discrimination is performed by measuring the relative amplitudes of different seismic waves

The Knowledge Base is needed because wave propagation in the earth is not uniform

Seismic travel times from a point in the Middle East

Assumed Uniform World

The Actual Situation

End-to-end tests validate calibrations: earthquake aftershocks test location capability

1991 Aftershock Sequence

- 13 events with known locations
- sparse network relocation

Ground truth from a dense local network

Relocating the Racha earthquake sequence with and without corrections shows calibration value

Path corrections significantly improve discrimination

Conclusion

 Nuclear explosion monitoring is well developed across many technologies worldwide